Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2339574, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38601988

RESUMO

The giant (2-3 × 10-2 m long) internodal cells of the aquatic plant, Chara, exhibit a rapid (>100 × 10-6 m s-1) cyclic cytoplasmic streaming which stops in response to mechanical stimuli. Since the streaming - and the stopping of streaming upon stimulation - is easily visible with a stereomicroscope, these single cells are ideal tools to investigate mechanosensing in plant cells, as well as the potential for these cells to be anesthetized. We found that dropping a steel ball (0.88 × 10-3 kg, 6 × 10-3 m in diameter) through a 4.6 cm long tube (delivering ca. 4 × 10-4 J) reliably induced mechanically-stimulated cessation of cytoplasmic streaming. To determine whether mechanically-induced cessation of cytoplasmic streaming in Chara was sensitive to anesthesia, we treated Chara internodal cells to volatilized chloroform in a 9.8 × 10-3 m3 chamber for 2 minutes. We found that low doses (15,000-25,000 ppm) of chloroform did not always anesthetize cells, whereas large doses (46,000 and higher) proved lethal. However, 31,000 ppm chloroform completely, and reversibly, anesthetized these cells in that they did not stop cytoplasmic streaming upon mechanostimulation, but after 24 hours the cells recovered their sensitivity to mechanostimulation. We believe this single-cell model will prove useful for elucidating the still obscure mode of action of volatile anesthetics.


Assuntos
Anestesia , Chara , Clorofórmio , Corrente Citoplasmática/fisiologia
2.
Physiol Plant ; 176(2): e14234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439180

RESUMO

A variety of inorganic carbon acquisition modes have been proposed in Characean algae, however, a broadly applicable inorganic carbon uptake mechanism is unknown for the genus Chara. In the present study, we analyzed if C. braunii can efficiently use HCO3 - as a carbon source for photosynthesis. For this purpose, C. braunii was exposed to different concentrations of NaHCO3 - at different time scales. The photosynthetic electron transport through photosystem I (PSI) and II (PSII), the maximum electron transport rate (ETRmax ), the efficiency of the electron transport rate (α, the initial slope of the ETR), and the light saturation point of photosynthesis (Ek ) were evaluated. Additionally, pigment contents (chlorophyll a, chlorophyll b, and carotenoids) were determined. Bicarbonate addition positively affected ETRmax , after direct HCO3 - application, of both PSII and PSI, but this effect seems to decrease after 1 h and 24 h. Similar trends were seen for Ek , but no significant effect was observed for α. Pigment contents showed no significant changes in relation to different HCO3 - concentrations. To evaluate if cyclic electron flow around PSI was involved in active HCO3 - uptake, the ratio of PSI ETRmax /PSII ETRmax was calculated but did not show a distinctive trend. These results suggest that C. braunii can utilize NaHCO3 - in short-term periods as a carbon source but could rely on other carbon acquisition mechanisms over prolonged time periods. These observations suggest that the minor role of HCO3 - as a carbon source for photosynthesis in this alga might differentiate C. braunii from other examined Chara spp.


Assuntos
Bicarbonatos , Chara , Clorofila A , Fotossíntese , Carbono
3.
Biophys Chem ; 307: 107199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335807

RESUMO

The membrane potential (Vm) of a cell results from the selective movement of ions across the cell membrane. Recent studies have revealed the presence of a gradient of voltage within a few nanometers adjacent to erythrocytes. Very notably this voltage is modified in response to changes in cell's membrane potential thus effectively extending the potential beyond the membrane and into the solution. In this study, using the microelectrode technique, we provide experimental evidence for the existence of a gradient of negative extracellular voltage (Vz) in a wide zone close to the cell wall of algal cells, extending over several micrometers. Modulating the ionic concentration of the extracellular solution with CO2 alters the extracellular voltage and causes an immediate change in Vm. Elevated extracellular CO2 levels depolarize the cell and hyperpolarize the zone of extracellular voltage (ZEV) by the same magnitude. This observation strongly suggests a coupling effect between Vz and Vm. An increase in the level of intracellular CO2 (dark respiration) leads to hyperpolarization of the cell without any immediate effect on the extracellular voltage. Therefore, the metabolic activity of a cell can proceed without inducing changes in Vz. Conversely, Vz can be modified by external stimulation without metabolic input from the cell. The evolution of the ZEV, particularly around spines and wounded cells, where ion exchange is enhanced, suggests that the formation of the ZEV may be attributed to the exchange of ions across the cell wall and cell membrane. By comparing the changes in Vm in response to external stimuli, as measured by electrodes and observed using a potential-sensitive dye, we provide experimental evidence demonstrating the significance of extracellular voltage in determining the cell's membrane potential. This may have implications for our understanding of cell membrane potential generation beyond the activities of ion channels.


Assuntos
Chara , Potenciais da Membrana , Dióxido de Carbono , Canais Iônicos , Íons
4.
Protoplasma ; 261(2): 183-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880545

RESUMO

Chara has been used as a model for decades in the field of plant physiology, enabling the investigation of fundamental physiological processes. In electrophysiological studies, Chara has been utilized thanks to its large internodal cells that can be easily manipulated. Additionally, Chara played a pioneering role in elucidating the presence and function of the cytoskeleton in cytoplasmic streaming, predating similar findings in terrestrial plants. Its representation considerably declined following the establishment and routine application of genetic transformation techniques in Arabidopsis. Nevertheless, the recent surge in evo-devo studies can be attributed to the whole genome sequencing of the Chara braunii, which has shed light on ancestral traits prevalent in land plants. Surprisingly, the Chara braunii genome encompasses numerous genes that were previously regarded as exclusive to land plants, suggesting their acquisition prior to the colonization of terrestrial habitats. This review summarizes the established methods used to study Chara, while incorporating recent molecular data, to showcase its renewed importance as a model organism in advancing plant evolutionary developmental biology.


Assuntos
Chara , Embriófitas , Plantas/genética , Evolução Biológica , Corrente Citoplasmática
5.
Biochim Biophys Acta Bioenerg ; 1865(1): 149019, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924923

RESUMO

Excitable cells of higher plants and characean algae respond to stressful stimuli by generating action potentials (AP) whose regulatory influence on chlorophyll (Chl) fluorescence and photosynthesis extends over tens of minutes. Unlike plant leaves where the efficiency of photosystem II reaction (YII) undergoes a separate reversible depression after an individual AP, characean algae exhibit long-lasting oscillations of YII after firing AP, provided that Chl fluorescence is measured on microscopic cell regions. Internodal cells of charophytes feature an extremely fast cytoplasmic streaming that stops immediately during the spike and recovers within ~10 min after AP. In this study a possibility was examined that multiple oscillations of YII and Chl fluorescence parameters (F', Fm') result from the combined influence of metabolic rearrangements in chloroplasts and the cyclosis cessation-recovery cycle induced by the Ca2+ influx during AP. It is shown that the AP-induced Fm' and YII oscillations disappear when the fluidic communications between the analyzed area (AOI) and surrounding cell regions are restricted or eliminated. The microfluidic signaling was manipulated in two ways: by narrowing the illuminated cell area and by arresting the cytoplasmic streaming with cytochalasin D (CD). The inhibition of Fm' and YII oscillations was not caused by the loss of cell excitability, since CD-treated cells retained the capacity of AP generation. The mechanism of AP-induced oscillations of YII and Chl fluorescence seems to involve the lateral microfluidic transport of signaling substances in combination with the distribution pattern of these substances that was enhanced during the period of streaming cessation.


Assuntos
Chara , Fluorescência , Concentração de Íons de Hidrogênio , Citoplasma/metabolismo , Membrana Celular/metabolismo , Clorofila/metabolismo
6.
Biochemistry (Mosc) ; 88(10): 1455-1466, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105017

RESUMO

Action potentials of plant cells are engaged in the regulation of many cell processes, including photosynthesis and cytoplasmic streaming. Excitable cells of characean algae submerged in a medium with an elevated K+ content are capable of generating hyperpolarizing electrical responses. These active responses of plasma membrane originate upon the passage of inward electric current comparable in strength to natural currents circulating in illuminated Chara internodes. So far, it remained unknown whether the hyperpolarizing electrical signals in Chara affect the photosynthetic activity. Here, we showed that the negative shift of cell membrane potential, which drives K+ influx into the cytoplasm, is accompanied by a delayed decrease in the actual yield of chlorophyll fluorescence F' and the maximal fluorescence yield Fm' under low background light (12.5 µmol m-2 s-1). The transient changes in F' and Fm' were evident only under illumination, which suggests their close relation to the photosynthetic energy conversion in chloroplasts. Passing the inward current caused an increase in pH at the cell surface (pHo), which reflected high H+/OH- conductance of the plasmalemma and indicated a decrease in cytoplasmic pH due to the H+ entry into the cell. The shifts in pHo arising in response to the first hyperpolarizing pulse disappeared upon repeated stimulation, thus indicating the long-term inactivation of plasmalemmal H+/OH- conductance. Suppression of plasmalemmal H+ fluxes did not abolish the hyperpolarizing responses and the analyzed changes in chlorophyll fluorescence. These results suggest that K+ fluxes between the extracellular medium, cytoplasm, and stroma are involved in the functional changes of chloroplasts reflected by transients of F' and Fm'.


Assuntos
Chara , Chara/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Cloroplastos/metabolismo , Fotossíntese , Membrana Celular/metabolismo , Clorofila/metabolismo
7.
Physiol Plant ; 175(6): e14123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148211

RESUMO

Chara braunii is a model for early land plant evolution and terrestrialization. Salt stress has a profound effect on water and ion transport activities, thereby interacting with many other processes, including inorganic carbon acquisition for photosynthesis. In this study, we analyzed the impact of salt stress (5 practical salt units, PSU) on the physiology and gene expression in C. braunii. Photosynthesis was only slightly affected 6 h after salt addition and returned to control levels after 48 h. Several organic compounds such as proline, glutamate, sucrose, and 2-aminobutyrate accumulated in salt-treated thalli and might contribute to osmotic potential acclimation, whereas the amount of K+ decreased. We quantified transcript levels for 17,387 genes, of which 95 were up-regulated and 44 down-regulated after salt addition. Genes encoding proteins of the functional groups ion/solute transport and cell wall synthesis/modulation were enriched among the up-regulated genes 24-48 h after salt stress, indicating their role in osmotic acclimation. However, a homolog to land plant ERD4 osmosensors was transiently upregulated after 6 h, and phylogenetic analyses suggested that these sensors evolved in Charophyceae. Down-regulated genes were mainly related to photosynthesis and carbon metabolism/fixation, consistent with the observed lowered growth after extended cultivation. The changed expression of genes encoding proteins for inorganic carbon acquisition might be related to the impact of salt on ionic relations and inorganic carbon uptake. The results indicate that C. braunii can tolerate enhanced salt concentrations in a defined acclimation process, including distinct gene expression changes to achieve new metabolic homeostasis.


Assuntos
Chara , Clorófitas , Transcriptoma , Perfilação da Expressão Gênica , Filogenia , Estresse Salino/genética , Carbono , Regulação da Expressão Gênica de Plantas
8.
Sci Rep ; 13(1): 20096, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973793

RESUMO

The distribution data of 11 soft substrate charophyte and angiosperm species were analyzed. Our study aimed to elucidate the co-occurrence patterns among these sympatric macrophyte species and quantify their distribution areas. The central hypothesis of this study proposed that the observed co-occurrence patterns among the studied species deviate from what would be expected by random chance. Macrophyte occurrence data was derived from an extensive field sampling database. Environmental variables available as georeferenced raster layers including topographical, hydrodynamic, geological, physical, chemical, and biological variables were used as predictor variables in the random forest models to predict the spatial distribution of the species. Permutation tests revealed statistically significant deviations from random co-occurrence patterns. The analysis demonstrated that species tended to co-occur more frequently within their taxonomic groups (i.e., within charophytes and within angiosperms) than between these groups. The most extensive distribution overlap was observed between Chara aspera Willd. and Chara canescens Loisel., while Zostera marina L. exhibited the least overlap with the other species. The mean number of co-occurring species was the highest in Chara baltica (Hartman) Bruzelius while Z. marina had the largest share of single-species occurrences. Based on the distribution models, Stuckenia pectinata (L.) Börner had the largest distribution area.


Assuntos
Chara , Carofíceas , Fabaceae , Magnoliopsida , Países Bálticos
9.
Physiol Plant ; 175(5): e14025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882314

RESUMO

Charophyceae are the most complex streptophyte algae, possessing tissue-like structures, rhizoids and a cellulose-pectin-based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non-sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA-seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3- and PAX7-binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP- and DNA binding. Looking at specific genes, several signaling-related genes and genes encoding sugar-metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis-and chloroplast-related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360-containing cysteine-rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.


Assuntos
Chara , Clorófitas , Embriófitas , Transcriptoma/genética , Plantas/genética , Embriófitas/metabolismo , Filogenia
10.
Physiol Plant ; 175(4): e13989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616003

RESUMO

Streptophyte algae are the closest relatives to land plants; their latest common ancestor performed the most drastic adaptation in plant evolution around 500 million years ago: the conquest of land. Besides other adaptations, this step required changes in cell wall composition. Current knowledge on the cell walls of streptophyte algae and especially on the presence of arabinogalactan-proteins (AGPs), important signalling molecules in all land plants, is limited. To get deeper insights into the cell walls of streptophyte algae, especially in Charophyceae, we performed sequential cell wall extractions of four Chara species. The three species Chara globularis, Chara subspinosa and Chara tomentosa revealed comparable cell wall compositions, with pectins, xylans and xyloglucans, whereas Chara aspera stood out with higher amounts of uronic acids in the pectic fractions and lack of reactivity with antibodies binding to xylan- and xyloglucan epitopes. Search for AGPs in the four Chara species and in Nitellopsis obtusa revealed the presence of galactans with pyranosidic galactose in 1,3-, 1,6- and 1,3,6-linkage, which are typical galactan motifs in land plant AGPs. A unique feature of these branched galactans was high portions of 3-O-methylgalactose. Only Nitellopsis contained substantial amounts of arabinose A bioinformatic search for prolyl-4-hydroxylases, involved in the biosynthesis of AGPs, revealed one possible functional sequence in the genome of Chara braunii, but no hydroxyproline could be detected in the four Chara species or in Nitellopsis obtusa. We conclude that AGPs that is typical for land plants are absent, at least in these members of the Charophyceae.


Assuntos
Chara , Embriófitas , Galactanos , Metilgalactosídeos , Plantas , Pectinas , Parede Celular
11.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174667

RESUMO

Microtubules are cytoskeletal cell elements that also build flagella and cilia. Moreover, these structures participate in spermatogenesis and form a microtubular manchette during spermiogenesis. The present study aims to assess the influence of propyzamide, a microtubule-disrupting agent, on alga Chara vulgaris spermatids during their differentiation by means of immunofluorescent and electron microscopy methods. Propyzamide blocks the functioning of the ß-tubulin microtubule subunit, which results in the creation of a distorted shape of a sperm nucleus at some stages. Present ultrastructural studies confirm these changes. In nuclei, an altered chromatin arrangement and nuclear envelope fragmentation were observed in the research as a result of incorrect nucleus-cytoplasm transport behavior that disturbed the action of proteolytic enzymes and the chromatin remodeling process. In the cytoplasm, large autolytic vacuoles and the dilated endoplasmic reticulum (ER) system, as well as mitochondria, were revealed in the studies. In some spermatids, the arrangement of microtubules present in the manchette was disturbed and the structure was also fragmented. The observations made in the research at present show that, despite some differences in the manchette between Chara and mammals, and probably also in the alga under study, microtubules participate in the intramanchette transport (IMT) process, which is essential during spermatid differentiation. In the present study, the effect of propyzamide on Chara spermiogenesis is also presented for the first time; however, the role of microtubule-associated proteins in this process still needs to be elucidated in the literature.


Assuntos
Chara , Espermátides , Masculino , Animais , Espermátides/metabolismo , Chara/ultraestrutura , Núcleo Celular/metabolismo , Mamíferos , Sementes
12.
Protoplasma ; 260(1): 131-143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35482255

RESUMO

Impact of membrane excitability on fluidic transport of photometabolites and their cell-to-cell passage via plasmodesmata was examined by pulse-modulated chlorophyll (Chl) microfluorometry in Chara australis internodes exposed to dim background light. The cells were subjected to a series of local light (LL) pulses with a 3-min period and a 30-s pulse width, which induced Chl fluorescence transients propagating in the direction of cytoplasmic streaming along the photostimulated and the neighboring internodes. By comparing Chl fluorescence changes induced in the LL-irradiated and the adjoining internodes, the permeability of the nodal complex for the photometabolites was assessed in the resting state and after the action potential (AP) generation. The electrically induced AP had no influence on Chl fluorescence in noncalcified cell regions but disturbed temporarily the metabolite transport along the internode and caused a disproportionally strong inhibition of intercellular metabolite transmission. In chloroplasts located close to calcified zones, Chl fluorescence increased transiently after cell excitation, which indicated the deceleration of photosynthetic electron flow on the acceptor side of photosystem I. Functional distinctions of chloroplasts located in noncalcified and calcified cell areas were also manifested in different modes of LL-induced changes of Chl fluorescence, which were accompanied by dissimilar changes in efficiency of PSII-driven electron flow. We conclude that chloroplasts located near the encrusted areas and in the incrustation-free cell regions are functionally distinct even in the absence of large-scale variations of cell surface pH. The inhibition of transnodal transport after AP generation is probably due to Ca2+-regulated changes in plasmodesmal aperture.


Assuntos
Chara , Elétrons , Concentração de Íons de Hidrogênio , Fotossíntese , Transporte Biológico , Cloroplastos/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Fluorescência
13.
Protoplasma ; 260(1): 299-306, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35676506

RESUMO

The hydraulic resistance (the reciprocal of the hydraulic conductivity Lp) Lp-1 was measured in cells of Chara corallina by the method of transcellular osmosis. Treatment of cells with 100 mM KCl decreased Lp-1 significantly. Subsequent treatment of the cells with 70 mM CaCl2 recovered the decreased Lp-1 to the original value. To know whether K+ or Ca2+/Mg2+ acts on the cell wall and/or the membrane, the hydraulic resistances of the cell wall (Lpw-1) and that of the membrane (Lpm-1) were determined in one and the same cell. For this, a pair of cells (twin cells) were made from an internodal cell, one used for measurement of Lp-1 and the other used for the measurement of Lpw-1. From Lp-1 and Lpw-1, Lpm-1 was calculated. Both Lp-1 and Lpw-1 were decreased by K+, while Lpm-1 was not affected by K+. The same result was obtained with 5 mM EGTA. Lpw-1 was decreased more than it was by KCl but Lpm-1 remained constant after EGTA treatment. The recovery of the K+-decreased Lp-1 with Ca2+ can be explained exclusively by the recovery of Lpw-1 with Ca2+. The Ca2+ recovery of Lpw-1 was observed in the intact cell wall but not in the cell wall tube isolated from an internodal cell. The different response to Ca2+ between the intact cell wall and the isolated cell wall was discussed in relation to the tension in the cell wall which may be an important factor for the ionic regulation of hydraulic conductivity.


Assuntos
Cálcio , Chara , Cálcio/metabolismo , Chara/fisiologia , Ácido Egtázico/metabolismo , Parede Celular/metabolismo
14.
Biophys J ; 122(2): 419-432, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36463405

RESUMO

Intercellular communication and transport is the essential prerequisite for the function of multicellular organisms. Simple diffusion as a transport mechanism is often inefficient in sustaining the effective exchange of metabolites, and other active transport mechanisms become involved. In this paper, we use the giant cells of characean algae as a model system to explore the role of advection and diffusion in intercellular transport. Using fluorescent dye as a tracer, we study the kinetics of the permeation of the fluorophore through the plasmodesmata complex in the node of tandem cells and its further distribution across the cell. To explore the role of cytoplasmic streaming and the nodal cell complex in the transport mechanism, we modulate the cytoplasmic streaming using action potential to separate the diffusive permeation from the advective contribution. The results imply that the plasmodesmal transport of fluorescent probe through the central and peripheral cells of the nodal complex is differentially regulated by a physiological signal, the action potential. The passage of the probe through the central cells of the nodal complex ceases transiently after elicitation of the action potential in the internodal cell, whereas the passage through the peripheral cells of the node was retained. A diffusion-advection model is developed to describe the transport kinetics and extract the permeability of the node-internode cell wall from experimental data.


Assuntos
Chara , Caráceas , Corantes Fluorescentes/metabolismo , Transporte Biológico , Corrente Citoplasmática/fisiologia
15.
J Ayub Med Coll Abbottabad ; 34(4): 888-890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36566422

RESUMO

Poppers is a recreational drug common in gay communities often used for euphoria and myorelaxation. It causes yellow foveal discoloration with disruption of outer segments of the foveal photoreceptors called Popper's maculopathy. We present first case of poppers maculopathy with use of Charas (Cannabis) from Pakistan. A 32-year-old transgender presented with bilateral gradual decrease in vision over the last two years. He gave past history of smoking cigarette and Cannabis (Charas). His visual acuity was 6/60 unaided and 6/36 with the help of pin hole bilaterally. Near vision was N/18 and Color vision was 12/12 on Ishihara test plate bilateral. Fundus examination revealed a yellow foveal spot at the posterior pole bilaterally. Optical coherence tomography (OCT) showed disruption of inner outer segment of foveal cones. Patient was followed up at three months after prescribing oral leutins with no improvement in vision.


Assuntos
Cannabis , Chara , Degeneração Macular , Doenças Retinianas , Masculino , Humanos , Adulto , Cannabis/efeitos adversos , Paquistão , Doenças Retinianas/diagnóstico , Doenças Retinianas/etiologia , Degeneração Macular/complicações , Tomografia de Coerência Óptica/efeitos adversos , Tomografia de Coerência Óptica/métodos
16.
Sensors (Basel) ; 22(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35808519

RESUMO

In the process of semantic capture, traditional sentence representation methods tend to lose a lot of global and contextual semantics and ignore the internal structure information of words in sentences. To address these limitations, we propose a sentence representation method for character-assisted construction-Bert (CharAs-CBert) to improve the accuracy of sentiment text classification. First, based on the construction, a more effective construction vector is generated to distinguish the basic morphology of the sentence and reduce the ambiguity of the same word in different sentences. At the same time, it aims to strengthen the representation of salient words and effectively capture contextual semantics. Second, character feature vectors are introduced to explore the internal structure information of sentences and improve the representation ability of local and global semantics. Then, to make the sentence representation have better stability and robustness, character information, word information, and construction vectors are combined and used together for sentence representation. Finally, the evaluation and verification are carried out on various open-source baseline data such as ACL-14 and SemEval 2014 to demonstrate the validity and reliability of sentence representation, namely, the F1 and ACC are 87.54% and 92.88% on ACL14, respectively.


Assuntos
Chara , Idioma , Reprodutibilidade dos Testes , Semântica , Análise de Sentimentos
17.
Plant Physiol Biochem ; 183: 111-119, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576891

RESUMO

Adaptation of plants to environmental changes involves the mechanisms of long-distance signaling. In characean algae, these mechanisms comprise the propagation of action potential (AP) and the rotational cytoplasmic streaming acting in cooperation with light-dependent exchange of ions and metabolites across the chloroplast envelope. Both excitability and cyclosis exert conspicuous effects on photosynthetic activity of chloroplasts but possible influence of cyclosis arrest on the coupling of AP stimulus to photosynthetic performance remained unexplored. In this study, fluidic interactions between anchored chloroplasts were allowed or restricted by illuminating the whole internode or a confined cell area (2 mm in diameter), respectively. Measurements of chlorophyll fluorescence parameters (F' and Fm') in cell regions located close to calcium crystal depositions revealed that the AP generation induced long-lasting Fm' oscillations that persisted in illuminated cells. The AP generation often induced the F' oscillations, whose number diminished upon the transfer of internodal cells from total to local background light. The results indicate that the AP-induced changes in photosynthetic parameters, F' in particular, have a complex origin and comprise the internal processes caused by the elevation of stromal Ca2+ concentration in the analyzed chloroplasts and the stages related to ion and metabolite exchange mediated by cytoplasmic streaming. It is supposed that the composition of flowing cytoplasm is heterogeneous due to the spatial alteration of calcified and noncalcified cell sites, but this heterogeneity is enhanced and can be visualized after the transient cessation and restoration of cytoplasmic streaming.


Assuntos
Chara , Membrana Celular/metabolismo , Chara/metabolismo , Cloroplastos/metabolismo , Concentração de Íons de Hidrogênio , Microfluídica
18.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173046

RESUMO

Cytoplasmic streaming with extremely high velocity (∼70 µm s-1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by myosin XI, it has been suggested that a myosin XI with a velocity of 70 µm s-1, the fastest myosin measured so far, exists in Chara cells. However, the velocity of the previously cloned Chara corallina myosin XI (CcXI) was about 20 µm s-1, one-third of the cytoplasmic streaming velocity in Chara Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. We cloned these four myosin XI (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 motor domains (MDs) were similar to that of CcXI MD, the velocities of CbXI-1 and CbXI-2 MDs were 3.2 times and 2.8 times faster than that of CcXI MD, respectively. The velocity of chimeric CbXI-1, a functional, full-length CbXI-1 construct, was 60 µm s-1 These results suggest that CbXI-1 and CbXI-2 would be the main contributors to cytoplasmic streaming in Chara cells and show that these myosins are ultrafast myosins with a velocity 10 times faster than fast skeletal muscle myosins in animals. We also report an atomic structure (2.8-Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-electron microscopy structure of acto-myosin XI at low resolution (4.3-Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loops support this hypothesis.


Assuntos
Chara/genética , Corrente Citoplasmática/fisiologia , Miosinas/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Corrente Citoplasmática/genética , Miosinas/genética
19.
Protoplasma ; 259(3): 615-626, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34232395

RESUMO

Characeae are closely related to the ancient algal ancestors of all land plants. The long characean cells display a pH banding pattern to facilitate inorganic carbon import in the acid zones for photosynthetic efficiency. The excess OH-, generated in the cytoplasm after CO2 is taken into the chloroplasts, is disposed of in the alkaline band. To identify the transporter responsible, we searched the Chara australis transcriptome for homologues of mouse Slc4a11, which functions as OH-/H+ transporter. We found a single Slc4-like sequence CL5060.2 (named CaSLOT). When CaSLOT was expressed in Xenopus oocytes, an increase in membrane conductance and hyperpolarization of resting potential difference (PD) was observed with external pH increase to 9.5. These features recall the behavior of Slc4a11 in oocytes and are consistent with the action of a pH-dependent OH-/H+ conductance. The large scatter in the data might reflect intrinsic variability of CaSLOT transporter activation, inefficient expression in the oocyte due to evolutionary distance between ancient algae and frogs, or absence of putative activating factor present in Chara cytoplasm. CaSLOT homologues were found in chlorophyte and charophyte algae, but surprisingly not in related charophytes Zygnematophyceae or Coleochaetophyceae.


Assuntos
Chara , Simportadores , Animais , Proteínas de Transporte de Ânions/metabolismo , Cloroplastos/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras , Camundongos , Fotossíntese , Simportadores/metabolismo
20.
Physiol Plant ; 173(4): 1901-1913, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34414581

RESUMO

Rapid cytoplasmic streaming in characean algae mediates communications between remote cell regions exposed to uneven irradiance. The metabolites exported from brightly illuminated chloroplasts spread along the internode with the liquid flow and cause transient changes in chlorophyll fluorescence at cell areas that are exposed to dim light or placed shortly in darkness. The largest distance to which the photometabolites can be transported has not yet been determined. Neither is it known if lateral transport has an influence on the induction of chlorophyll fluorescence. In this study, the relations between spatial connectivity of anchored chloroplasts in characean internodes and fluorescence induction curves were examined. Connectivity between remote cell parts was pronounced upon illumination of a cell spot at a distance up to 10 mm from the area of fluorescence measurement, provided the spot was located upstream in the cytoplasmic flow. Spatial interactions between distant cell sites were also manifested in strikingly different slow stages of fluorescence induction caused by narrow- and wide-field illumination. Cytochalasin D, cooling of bath solution, and inactivation of light-dependent envelope transporters were used to disturb cyclosis-mediated spatial interactions. Although fluorescence induction curves induced by narrow- and wide-field illumination differed greatly under control conditions, they became similar after the inhibition of cyclosis with cytochalasin D. The results indicate that cytoplasmic streaming not only drives the lateral translocation of photometabolites but also promotes the export of reducing power from illuminated chloroplasts due to flushing the chloroplast surface and keeping sharp concentration gradients.


Assuntos
Chara , Caráceas , Clorofila , Cloroplastos , Citoplasma , Fluorescência , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...